Stochastic Matrices in a Finite Field
ثبت نشده
چکیده
Abstract: In this project we will explore the properties of stochastic matrices in both the real and the finite fields. We first explore what properties 2 2 stochastic matrices in the real field have and then exam if they hold in the finite fields. We will prove how, given the conditions of a finite field, properties hold or fail to hold. We will extend our scope to 3 3 stochastic matrices and lay the groundwork for future research. Finally, we show how the properties in the real field extend directly to another infinite field: the rationals.
منابع مشابه
Comparative Study of Random Matrices Capability in Uncertainty Detection of Pier’s Dynamics
Because of random nature of many dependent variables in coastal engineering, treatment of effective parameters is generally associated with uncertainty. Numerical models are often used for dynamic analysis of complex structures, including mechanical systems. Furthermore, deterministic models are not sufficient for exact anticipation of structure’s dynamic response, but probabilistic models...
متن کاملComputational method based on triangular operational matrices for solving nonlinear stochastic differential equations
In this article, a new numerical method based on triangular functions for solving nonlinear stochastic differential equations is presented. For this, the stochastic operational matrix of triangular functions for It^{o} integral are determined. Computation of presented method is very simple and attractive. In addition, convergence analysis and numerical examples that illustrate accuracy and eff...
متن کاملQUASI-PERMUTATION REPRESENTATIONS OF SUZtTKI GROUP
By a quasi-permutation matrix we mean a square matrix over the complex field C with non-negative integral trace. Thus every permutation matrix over C is a quasipermutation matrix. For a given finite group G, let p(G) denote the minimal degree of a faithful permutation representation of G (or of a faithful representation of G by permutation matrices), let q(G) denote the minimal degree of a fai...
متن کاملQUASI-PERMUTATION REPRESENTATIONS OF METACYCLIC 2-GROUPS
By a quasi-permutation matrix we mean a square matrix over the complex field C with non-negative integral trace. Thus, every permutation matrix over C is a quasipermutation matrix. For a given finite group G, let p(G) denote the minimal degree of a faithful permutation representation of G (or of a faithful representation of G by permutation matrices), let q(G) denote the minimal degree of a fa...
متن کاملStochastic Finite Fault Modeling for the 16 September 1978 Tabas, Iran, Earthquake
The main objective of this study is estimating acceleration time history of 16 September 1978 Tabas earthquake incorporating the seismological/geological source-path and site model parameters by using finite-fault simulation approach. The method generalizes the stochastic ground-motion simulation technique, developed for point sources, to the case of finite faults. It subdivides the fault plane...
متن کامل